The impact of inbreeding on birth weight in the Pag sheep breed

Ante Kasap¹, Bartol Smutni¹, Jelena Ramljak¹, Valentino Držaić¹, Boro Mioč¹, Marija Špehar²

¹University of Zagreb. Faculty of Agriculture. Svetošimunska 25. 10000 Zagreb. Croatia; ²Croatian Agency for Agriculture and Food. Svetošimunska 25. 10000 Zagreb. Croatia

14.02.2024. | Dubrovnik | Croatia

Pag sheep

- Autochthonous breed
- Dual purpose (milk-meat)
- Population size ~ 30 000
- HARSH environment ("BURA" > 200 km/h)
- Forage enriched with sea salt
- Aromatic plants (special taste)

Pag sheep (dairy orientated breed)

- Modest milk yield ~ 0.8 Kg/day (120 kg in 5 months of milking)
- OUTSTANDING profitability
 fresh milk (~2 €/L) no surpluses
 cheese (30-40 €/kg)
 curd cheese (8 €/kg)
 fresh meat (~12 €/kg)

Pag sheep

- Long term goal \rightarrow to increase milk yield
- Selection ~ 4 500 sheep
- Pedigre records + Milk control (ICAR)

Aim of the study

Is there any inbreeding depression on birth weight in Pag sheep???????

HR 24009934 HR 22006028 HR 00000122 HR 2401600 HR 41123 760 HR 1088753 HR 24009481 HR 2401613 HR 10437821 HR 70389080 HR 11107603 HR 10413361 HR 10413361

Materials and methods – F_{ped}

- Data \rightarrow CMA & CAAF
- Pedigree \rightarrow n=281760 animals
- $F_{ped} \rightarrow$ "OptiSel" in R (Wellmann, 2021.)
- Pedigree QC \rightarrow NFG \geq 3 & born after 2010.

Materials and methods – inbreeding depression

- 15,186 lambs with known birth weight and *F_{ped}*
- 5-way ANCOVA (direct inbreeding)
- Birth weigth ~ F_{ped} + Parity + Litter size + Sex + Season + Flock
- Linearity of the data and residual errors mean = 0 \rightarrow (Residual vs Fitted plot) \checkmark
- Constant variance residual errors \rightarrow Scale-Location plot and the Non-Constant Error Variance Test (p = 0.14833).

Results – coefficient of inbreeding

Class of F _{PED} (%)	Frequency	Percent (%)
0-9	12323	76.43
9-17	2760	17.12
18-26	682	4.23
27-35	339	2.10
36-44	19	0.12
Total	16123	100

Results – the estimate of categorical predictors

Category	marginal mean	Standard error	Lower Cl	Upper Cl	
Parity					
1	3.013	0.014	2.985	3.040	
2	3.281	0.013	3.255	3.307	
3	3.417	0.014	3.391	3.444	
4	3.469	0.014	3.441	3.497	
5	3.468	0.015	3.439	3.497	
6	3.498	0.017	3.466	3.531	
7	3.458	0.019	3.421	3.495	
8	3.491	0.022	3.449	3.534	
9	3.477	0.026	3.426	3.528	
Litter size					
singletons	3.609	0.006	3.598	3.619	
twins	3.185	0.017	3.152	3.218	
Gender					
females	3.354	0.010	3.334	3.374	
males	3.440	0.010	3.420	3.460	

Results – inbreeding depression

For every 10% increase in F_{PED} it is expected decrease of BW for 0.01 kg

Discussion

- F_{PED} < 6.25% \rightarrow acceptable for small populations undergoing selection (breeders take care to avoid inbreeding in their flocks) !!!
- Potential presence of the inbreeding depression on BW
- Small number of individuals with high $F_{PED} \rightarrow \beta_1$ underestimated ???
- 10% (rule of the thumb)

Conclusion

- The obtained result calls for **attention in making further mating plans** in order to prevent a genetically influenced decrease of the birth weight.
- More evidence is needed to generalize this effect in sheep, preferably under the framework of the **animal genetic model**
- Fitting genomic inbreeding (F_{ROH}) in the AGM under the framework of the ssGBLUP will probably provide the most accurate estimates

Thank You for Your attention !

The research supported by Croatian Science Foundation (CSF). Project: *Genomic characterization, preservation, and optimum contribution selection of Croatian dairy sheep (OPTI-SHEEP). IP-2019-04-3559*