Partition of genetic trend for milk yield by gender and flock in Pag sheep

Ante Kasap¹, Leonarda Božulić¹, Ramljak Jelena¹, Mioč Boro¹, Marija Špehar²

¹University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia; ²Croatian Agency for Agriculture and Food, Svetošimunska 25, 10000 Zagreb, Croatia

22.06.2022. | Vodice | Croatia

Pag sheep

- Autochthonous dairy orientated breed
- HARSH ENVIRONMENT
- OUTSTANDING profitability milk (~2 €/L) cheese (~30 €/kg)

suckling lamb meat (12 €/kg)

Pag sheep

- Breeders seek to permanently increase milk yields in their "flocks"
- Recording system (phenotypes-daily milk yield, fat and protein content and pedigree)
- BLUP genetic evaluation system
- ESTIMATED BREEDING VALUES (EBVs)

Aim -> to validate success of breeding and selection in Pag sheep -> to find main contributors to milk related genetics between flocks and genders

How?? Via analysis of genetic trends for milk yield

How to decompose genetic trend on contributors??

- Calculation of selection differentials for the different paths (Van Tassell and Van Vleck, 1990) -> not a trivial task (overlapping pedigrees)
- The more sophisticated method, proposed by Garcia-Cortes et al. (2008) relies on a direct transformation of EBVs by pedigree

AlphaPart 0.8.1. (Gorjanc et al., 2021) →

- cattle (Gorjanc et al., 2011; Gorjanc et al., 2012; Špehar et al., 2011)
- pigs (Škorput et al., 2015)
- sheep (Špehar et al., 2021)

Materials and methods

• Test-day records → AT (ICAR) n=113,075 collected on 9,629 ewes in 21 flocks

• Covariance components & EBVs \rightarrow

multi-trait repeatability test-day animal model (Špehar et al., 2020)

- FIXED CLASS → Parity, litter size, season of lambing, and flock
- FIXED CONTINUOUS \rightarrow days in milk and age at lambing
- RANDOM → Flock-test-day, permanent environmental effect within lactations, and direct additive genetic effect

Material and methods

Estimation of genetic trends

• obtained as the average of \hat{a} (BVs) by birth year of animals (2010 to 2018)

Decomposition of genetic trends

• \hat{a} was partitioned by the gender and flock in R (R Core Team, 2020) with the package AlphaPart 0.8.1. (Gorjanc et al., 2021).

•
$$\widehat{a} = TP_1T^{-1}\widehat{a} + TP_2T^{-1}\widehat{a} + \dots + TP_kT^{-1}\widehat{a}$$

Results – decomposition of \hat{a} by gender

- DMY gain = 0.0087 kg (cumulative lactation gain per year was ~1 kg)
- Females have been main contributors to overall genetic trend for DMY

Results – decomposition of \hat{a} by flock

- relative importance to the overall genetic gain was inconsistent
- non-systematic selection with changeable success between years

Conclusions

- The estimates are a credible reflection of the true genetic change and the main contributors of genetic gain in this population
- Results implicate that females in this population have been exposed to higher selection pressure than males (**paradox**)
- Flocks included in the national genetic evaluation system had non-uniform contribution to the overall selection gain
- The results of the study should serve to:
 - 1) improve selection practices (selection of replacements on EBVs)
 - 2) demonstrate the way of monitoring trait-related genetic changes in this and similarly structured breeding programs (populations under selection)

Thank You for Your attention

This research was funded by the Croatian Science Foundation (Genomic characterization, preservation, and optimum contribution selection of Croatian dairy sheep, OPTI-SHEEP), under grant number IP-2019-04-3559.

