Genomic connectedness between flocks – case study on Istrian sheep breed

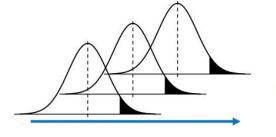
<u>A. Kasap¹</u>, J. Ramljak¹, M. Špehar², G. Gorjanc³

¹University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia ²Croatian Agency for Agriculture and Food, Svetošimunska 25, 10000 Zagreb, Croatia ³The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK;

16.09.2023. | Zadar | Croatia

Istrian sheep

- Fancy look (Roman nose, horns, colour)
- Importance (economy, tradition & culture, tourism, gastronomy, ecology)



Istrian sheep

Dual purpose (milk & meat)

- Selection ~ 11 flocks, 1.5K sheep
- Pedigree & phenotypic records
- Milk control (ICAR)

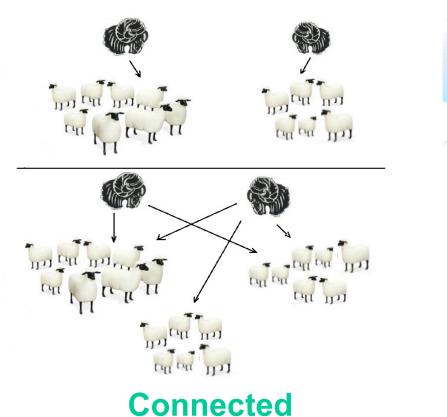
• BLUP_{ped}

 $\begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z+A^{-1}\lambda} \end{bmatrix} \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$

Numerator relationship matrix

Optimum contribution selection (OCS)

- Single step Genomic BLUP
- 50K SNP array

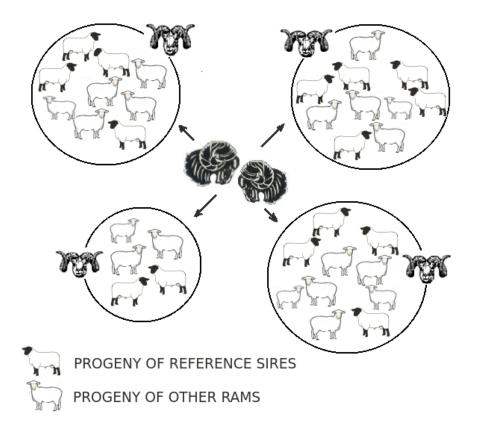

$$\boldsymbol{H}^{-1} = \boldsymbol{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \boldsymbol{G}^{-1} - \boldsymbol{A}_{22}^{-1} \end{bmatrix}$$

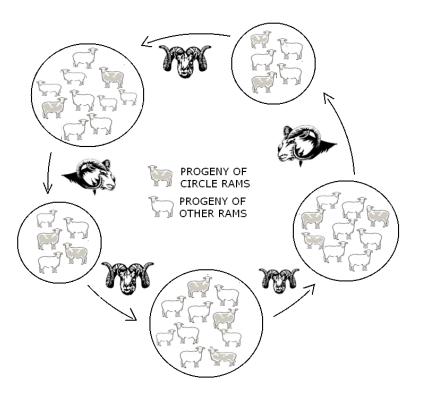
BLUP is good, BLUP if funny, everybody "BLUPs" for MONEY !!

Disconnected flocks !!!!

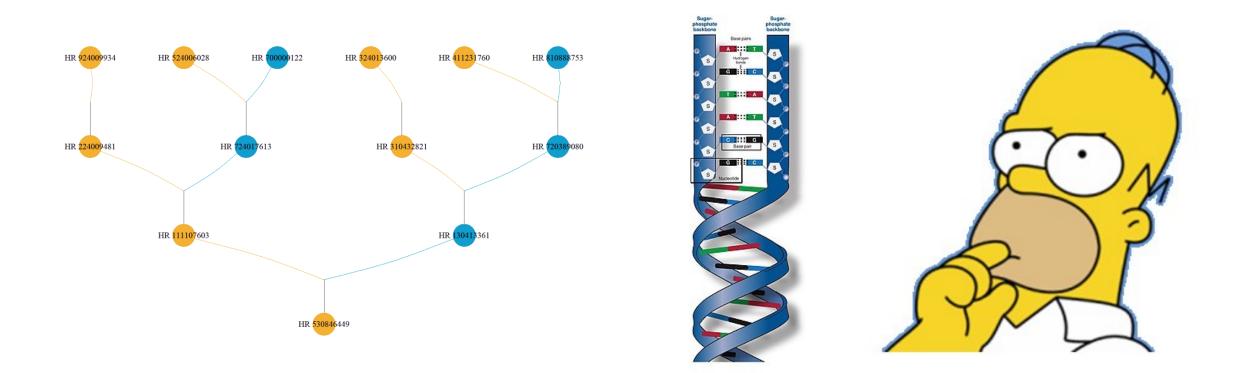
BLUP

BLUP


The issue of dissconectedness:

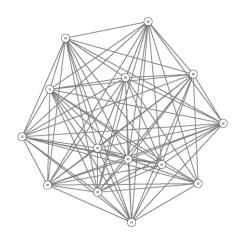

- Neglected in some breeding programs. BLUP is not MAGIC!!!
- Impossible to disentangle genetic from environmental effects
- Small ruminants and beef cattle NO/limited use of AI

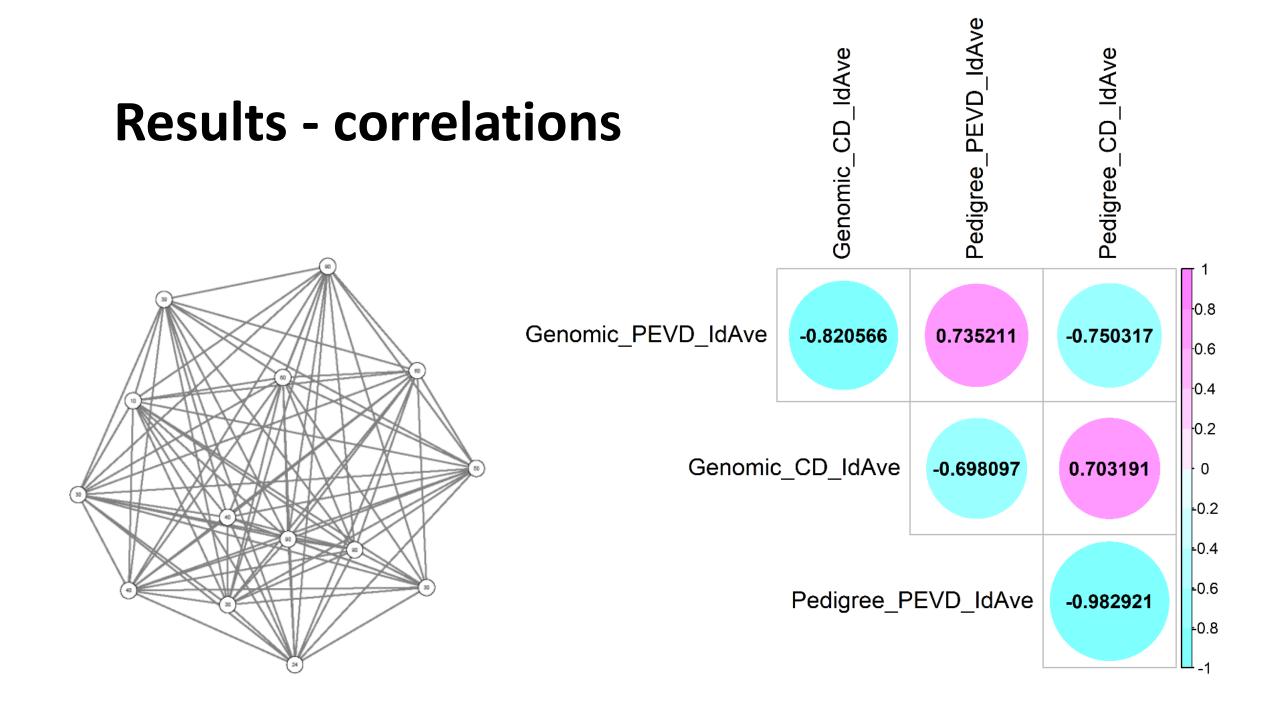
Strategies for connectedness


Sire referencing scheme

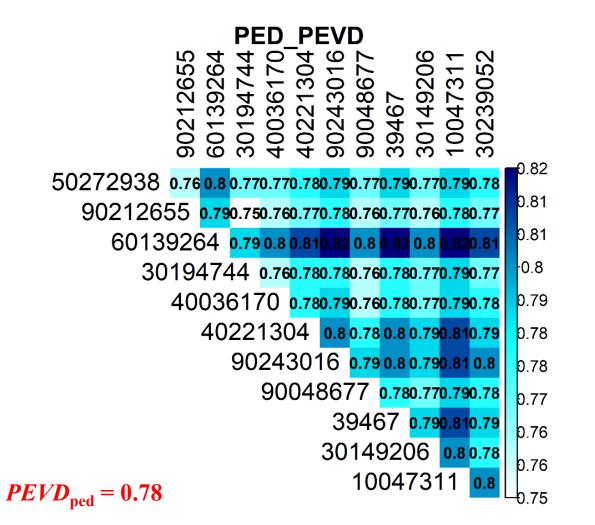
Circle rams

Can **genomic information** (SNPs) detect hidden relationships between animals in different flocks???




Materials and methods (n_{ped}~2000, n_{gen}=719)

- **PEVD** (Kennedy and Trus, 1993)
- $PEVD(\hat{u}_i \hat{u}_j) = \left[PEV(\hat{u}_i) + PEV(\hat{u}_j) 2PEC(\hat{u}_i, \hat{u}_j) \right] = \left(C_{ii}^{22} C_{ji}^{22} C_{ji}^{22} C_{jj}^{22} \right) * \sigma_e^2$
- $PEVD_{i'j'} = \frac{1}{n_{i'}*n_{j'}} \sum PEVD_{i'j'}$
- CD (Laloe, 1993)


•
$$CD_{ij} = 1 - \lambda \frac{C_{ii}^{22} + C_{jj}^{22} - 2C_{ij}^{22}}{K_{ii} + K_{jj} - 2K_{ij}}$$

• $CD_{i'j'} = 1 - \lambda * \frac{\frac{1}{n_{i'} * n_{j'}} * \Sigma \left(C_{i'i'}^{22} + C_{j'j'}^{22} - 2C_{i'j'}^{22}\right)}{\frac{1}{n_{i'} * n_{j'}} * \Sigma \left(K_{i'i'} + K_{j'j'} - 2K_{i'j'}\right)} = 1 - \frac{\Sigma PEVD_{i'j'}}{\sigma_u^2 * \Sigma \left(K_{i'i'} + K_{j'j'} - 2K_{i'j'}\right)}$

• R package "GCA" (Yu and Morota, 2021)

Results – PEVD \rightarrow lower is better $\triangle PEVD_{ped \rightarrow gen} = -10\%$

GENOMIC PEVD 90243016¹ 90048677 1304 20 90 3926 ഹ 6 2 \mathcal{O} 94 36 σ \sim 4022 . Ö က 4 4 394 400 02 ~ 80 30 30 ō 00 ∞ 50272938 0.7 0.74 0.7 0.690.730.710.71 0.7 0.710.73 0.7 0.76 90212655 0.730.690.680.72 0.7 0.690.69 0.7 0.720.69 0.75 60139264 0.730.730.760.740.740.730.740.760.73 0.74 30194744 0.68<mark>0.72 0.7 0.7 0.69 0.7 0.72</mark>0.69 40036170 0.720.690.690.690.690.710.68 0.73 40221304 0.730.730.720.730.740.72 0.72 90243016 0.71 0.7 0.710.73 0.7 0.71 90048677 0.7 0.710.720.69 0.71 39467 0.7 0.720.69 0.7 30149206 0.73 0.7 b.69 10047311

*PEVD*_{gen} =0.071

Results – CD \rightarrow higher is better!!!!! $\Delta CD_{ped \rightarrow gen} = 13\%$

PED CD		
55 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	52	
90212655 60139264 60139264 30194744 40036170 40221304 90243016 90243016 90243016 30467 30467 30149206 30149206	06	
C C C C C C C C C C C C C C C C C C C	53	
90212655 60139264 60139264 30194744 40036170 40221304 90243016 90243016 90243016 30467 39467 30149206 30149206	30239052	
50272938 0.62 0.6 0.620.620.610.610.620.610.61 0.6		0.62
		0.62
90212655 0.610.620.620.610.610.620.610.620.6		0.62
60139264 0.6 0.6 0.590.59 0.6 0.59 0.6 0.5	9 0.6	
30194744 0.620.610.610.620.610.620.6	10.61	0.61
40036170 0.610.610.620.610.610.6	10.61	Ð.61
40221304 0.6 0.61 0.6 0.61 0.6	0.6	0.61
90243016 0.61 0.6 0.6	0.6	0.6
90048677 0.610.610.6	10.61	0.6
39467 0.61 0.6	0.6	0.6
30149206 0.6	0.61	0.59
$CD_{ped} = 0.61$ 10047311	0.6	0.59

90212655 60139264 60139264 30194744 B 30194744 B 40036170 M 40036170 M 3019474 B 40036170 M 400261304 M 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 90048677 D 30149206 10047311 30239052	
50272938 0.670.650.680.680.670.670.670.670.670.650.67	0.69
90212655 0.660.680.690.670.670.670.680.670.660.68	h 68
60139264 0.660.670.660.650.650.660.650.640.66	h co
30194744 0.690.680.680.670.680.670.660.68	
40036170 0.680.680.680.680.680.680.670.69	
40221304 0.670.670.680.670.660.68	
90243016 0.670.670.670.660.68	
90048677 0.670.670.650.67	0.00
	0.05
39467 0.670.66 <mark>0.68</mark>	0.65
30149206 0.650.67	0.64
$CD_{\rm ped} = 0.691$ 10047311 0.66	

Conclusions

 Genomic information contributes to unraveling connectedness between flocks

• More accurate estimates of breeding values for genomic selection versus traditional pedigree-based selection

• Working on connectedness in population is necessary

Thank You for Your attention !!

Acknowledgment: This research has been fully supported by Croatian Science Foundation (Genomic characterization, preservation and optimum contribution selection of Croatian dairy sheep, OPTI-SHEEP), grant number IP-2019-04-3559.

