

Assessing Among Flocks Genetic Diversity in Istrian Sheep to Define a Framework for Optimum Contribution Selection

Marija Špehar¹, Jelena Ramljak², Ante Kasap²

Applications of genetic diversity studies

- Preserve genetic resources
- Determine genes involved in domestication
- Selection of parents for a breeding program
- Establish effective breeding methods

Measures of genetic diversity

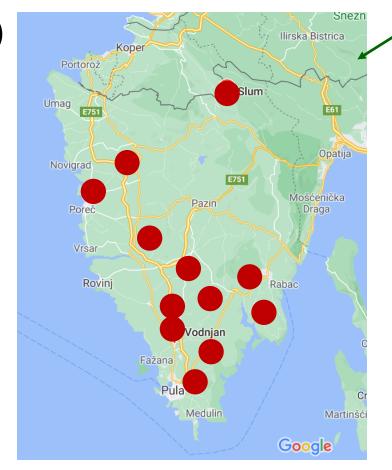
- Observed heterozygosity (H_o)
- Expected heterozygosity (H_e)
- Wright's F statistic (F_{ST})
- Linkage disequilibrium (LD)
- Runs of homozygosity (ROH)
- Effective population size (N_e)

•

Objective

 To analyse genetic diversity between and within flocks of Istrian sheep

Implementation of optimum contribution selection



Material

• 719 animals (ewes and rams)

- Milk recording (ICAR)
- Pedigree BLUP
- From 12 flocks

Material cont.

- Illumina OvineSNP50K BeadChip® v.2 (52,152 SNPs)
- Quality control
 - autosomal SNPs only
 - SNP and individual genotype call rate > 0.90
 - -47,793 SNPs

Method

- Calculation of genomic population parameters
 - snpReady

- Post hoc statistical analysis
 - ggplot

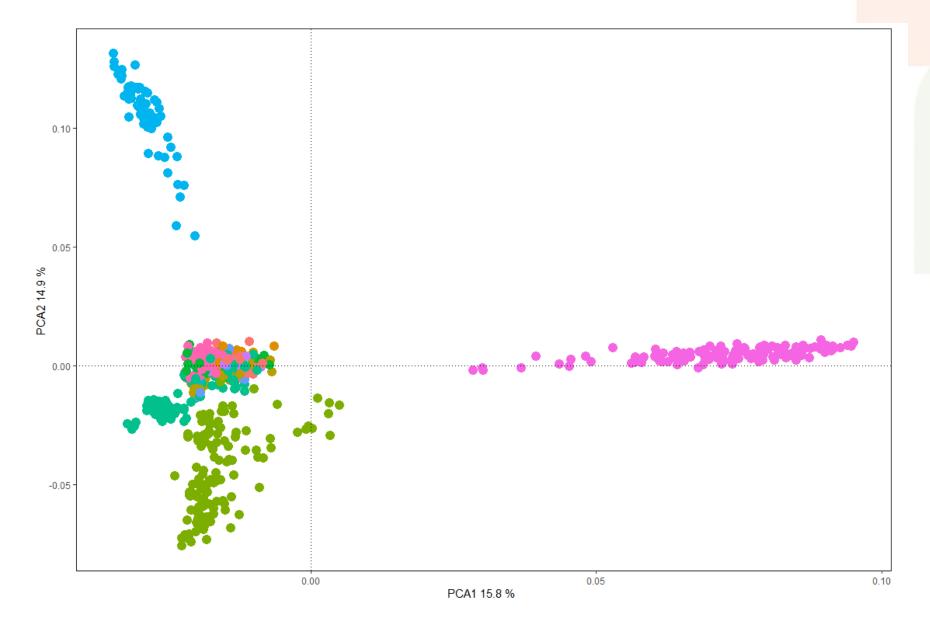
Results

Genetic diversity parameters

• Expected heterozygosity $(H_F) \longrightarrow 0.357$

• Observed heterozygosity $(H_0) \longrightarrow 0.332$

Inbreeding coefficient (F) → 0.07


Pair-wise genetic differentiation among flocks

	IST2	IST3	IST4	IST5	IST6	IST7	IST8	IST9	IST10	IST11	IST12
IST1	0.088	0.081	0.33	0.046	0.087	0.077	0.058	0.104	0.129	0.138	0.219
IST2		0.102	0.413	0.028	0.096	0.117	0.055	0.189	0.189	0.16	0.283
IST3			0.366	0.04	0.09	0.085	0.057	0.124	0.149	0.147	0.245
IST4				0.342	0.282	0.405	0.307	0.405	0.372	0.29	0.369
IST5					0.069	0.016	0.027	0.059	0.106	0.129	0.218
IST6						0.09	0.073	0.105	0.12	0.131	0.19
IST7							0.047	0.154	0.172	0.155	0.274
IST8								0.072	0.103	0.124	0.197
IST9									0.195	0.163	0.28
IST10										0.167	0.262
IST11											0.214

Principal component analysis

Conclusions

- Preserved substantial amount of genetic diversity
- Moderate level of inbreeding

- Separation of three flocks / overlaping of the rest
- Contribution to design appropriate and successful genomic selection program

Future work

- Ongoing genotyping
- Estimation of signals of selection for dairy traits
- Genetic profile and relationship with another breeds
- SS GBLUP (developed on basic level but not implemented in routine genetic evaluation)
- GWAS for dairy traits

Thank You For Listening

