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Simple Summary: Selection progress with minimal loss of genetic variability is a challenging task
in small populations exposed to selection, such as the Istrian sheep breed. To achieve a balance
between selection gain and loss of genetic variability, genomic optimum contribution selection (OCS)
is emerging as the best long-term selection approach. However, investment in genomic OCS requires
a deep knowledge of some specific population parameters such as effective population size (Ne) and
connectedness between flocks. The determined ∆Ne suggests recent loss of genetic variability, and
low connectedness between flocks makes it difficult to rank animals (breeding values) from different
flocks in an unbiased way. The former “calls” for the implementation of OCS to reduce the loss of
genetic variability, and the latter for improvement of connectedness in order to conduct a fair genetic
evaluation of animals belonging to different flocks.

Abstract: The Istrian sheep breed has been subjected to selection for dairy traits for more than
two decades. However, a detailed study of some important population-specific parameters such
as effective population size (Ne) and connectedness between flocks has never been carried out.
The aim of the study was to examine the above parameters in dairy Istrian sheep subjected to a
national selection program. The Ne was estimated as the mean rate of increase in coancestry, and
connectedness was determined using four different statistics. The Ne was estimated at 73 animals
with pedigree constraints imposed on 4 equivalent generations and 3 full generations. Analysis of
∆Ne (“sliding window approach”) revealed a negative ∆Ne indicating a progressive loss of genetic
variability (∆NeNEG≥4 = −6.6, p < 0.01; ∆NeNFG≥3 = −4.9, p > 0.05). The overall connectedness
(r ~ 0.0001) was below the acceptable level for unbiased ranking of the animals belonging to different
flocks (ri,j = 0.05). OCS appears to be the best option for the long-term survival (self-sufficiency) of
the breed, but genetic links between flocks need to be strengthened to allow unbiased ranking of the
animals based on the estimated breeding values.

Keywords: inbreeding; effective population size; connectedness; sheep; selection

1. Introduction

The Istrian sheep is a Croatian dual-purpose breed (milk and meat) with great tradi-
tional, cultural, and social importance for the residents of the Istrian peninsula. In recent
times, great efforts have been made to keep the breed sustainable, mainly by increasing pro-
ductivity and economic self-sufficiency through better management and selection. There
is a constant market demand for Istrian sheep cheese, which has directed recent selection
strategies in the breed towards dairy traits. Performance recording started two decades
ago, while BLUP genetic evaluation has been carried out for about a decade [1]. A total
of 1632 individuals have been included in the national selection program [2]. For this
purpose, the test-day repeatability animal model has been used [3]. For the sake of higher
accuracy, the existing genetic evaluation is planned to be upgraded to the single-step
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genomic BLUP [4]. Increased accuracy of genomic evaluation compared to traditional
pedigree-based genetic evaluation was reported in numerous dairy-orientated sheep breed-
ing programs (e.g., [5–8]).

The small size of the breed requires special attention in making selection decisions due
to inevitable inbreeding. Inbreeding is impossible to avoid in small animal populations,
especially those under severe selection pressure [9]. The main reason is the overuse of
genetically superior, but also genetically more similar, animals. Related animals share
genes, so their performance and estimated breeding values are more similar than those of
unrelated animals [10]. To control inbreeding, future matings should have a low expected
inbreeding coefficient of the offspring, which is equal to the kinship of the parents [11]. The
optimum contribution selection approach appears to be the optimal selection strategy in
this population to achieve genetic gain and mitigate the loss of selection variability.

Individual- and population-specific parameters have traditionally been estimated
from the pedigree and more recently with genomic data. However, despite the availability
of genomic tools, genealogical data still remain the main source of information for monitor-
ing genetic variability in many populations of livestock species [12]. An important measure
for monitoring genetic diversity is effective population size (Ne), which is the size of an
idealized population that would produce the same genetic variation as the population
under study [13]. Ne can be estimated using a variety of statistics [14]. The most commonly
used approach has been the regression of coefficient of inbreeding or coancestry (IBD)
on time or generation, with Ne = 1/2∆IBDs [15]. One of the more recent approaches esti-
mates individual IBD rates by combining individual IBD coefficients with total equivalent
complete generations. This method was originally developed by Gutiérrez et al. [16] and
improved by Cervantes et al. [17].

The success of across-flock genetic evaluation system depends on the genetic connect-
edness between flocks. Connectedness indirectly measures the extent to which estimated
breeding values can be fairly compared across flocks [18,19]. When flocks are sufficiently
connected, the BLUP genetic evaluation is robust, and estimated breeding values (EBV) can
be fairly compared between flocks. On the other hand, limited connectedness leads to bias
when comparing EBVs of animals belonging to different flocks [20]. Several statistical mea-
sures have been developed and proposed so far to examine the degree of connectedness.
Some of the most know are connectedness index [21], coefficient of determination of the
difference between EBVs of a pair of animals [22], prediction error variance of differences
in EBVs between animals, variance of estimates of management-unit effects, gene flow
method, genetic drift variance [23], and correlation of breeding value prediction errors [24].
These statistics are useful to estimate the risk of comparing EBVs between flocks, as well
as to design breeding schemes aimed at effectively linking flocks. Recently, genomic
data have been used to assess connectedness [25,26]. A special tool for this purpose (R
package “GCA”) driven by either pedigree data or genomic data (SNPs) has recently
become available [27].

In order to provide basic information essential for designing the selection strategy in
the Istrian sheep population, this study aimed to estimate two very important population-
specific parameters: effective population size and genetic connectedness between flocks.

2. Materials and Methods
2.1. Data

Genealogical data of the Istrian sheep breed for this study were provided by the
Croatian Ministry of Agriculture. Istrian sheep included in the Croatian national selection
program and all their available ancestors were included in the analysis. A total of 6866 sheep
belonging to 118 flocks were included in the analysis. Truncation of the data used in the
inferential statistical analysis, i.e., the definition of the reference population, was done
at several instances based on different criteria (measures of pedigree information). The
statistics used to assess the quality of the pedigree and the thresholds used to truncate
non-informative animals are explained in detail in the rest of the text.
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2.2. Statistical Analysis
2.2.1. Pedigree Analysis

All steps of the statistical analysis were conducted in R programming environment (R
Core Team) [28]. The package “optiSel” [29] was used for

(1) Quality control of the pedigree (completeness, pedigree completeness index (PCI),
number of equivalent complete generations (NEG), number of fully traced generations
(NFG), and number of maximum generations traced (NMG)),

(2) Estimation of individual- and population-specific parameters (coefficients of inbreed-
ing (Fi) and kinship (Kij), effective population size (Ne), and generation interval).

Completeness was calculated for individuals and groups of individuals in each an-
cestral generation. This measure represents the proportion of known ancestors in each
generation. The results obtained are presented graphically (Figure 1).
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Figure 1. Completeness of the pedigree of Istrian sheep under the study.

Pedigree completeness index (PCI), i.e., the harmonic mean of the pedigree com-
pleteness of the parents [30], was calculated using the following formula:

PCI =
2C f ∗ Cm

2C f + Cm
(1)

with C f and Cm being proportions of paternal and maternal ancestors estimated based on:

C =
1
d ∑d

i=1 ai (2)

where ai was the ratio of known to unknown ancestors in each generation, and d was
the number of generations. The harmonic mean ensures that the less complete ancestral
pedigree is weighted more heavily, so the PCI equals zero when either parent is unknown.
Even though in specific occasions inbreeding coefficients can be valid despite small PCIs (if
the most recent founders were indeed unrelated), speculating with this information would
be very risky; therefore, we decided to discard from the analysis all individuals with PCI
less than 0.6.
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Equivalent number generations (NEG) were obtained as the sum of the proportions
of known ancestors of an individual over all traced generations [31] as follows:

nj

∑
i=1

1
2gij

(3)

In the above formula, nj is the number of ancestors of individual j, and gij is the
number of generations between individual j and its ancestor i. In this way, 1/2 is added
for each known parent, 1/4 for each known grandparent, 1/8 for each known great-
grandparent, and so on.

Effective population size (Ne) was estimated from the mean rate of increase in
coancestry [17], where the increase in coancestry between any pair of individuals i and j
was computed as:

∆Cij = 1−
gi+gj

2

√
1− Cij (4)

where Cij is the kinship between i and j, and gi and gj are the numbers of equivalent
complete generations of individuals i and j. The effective size was then estimated as:

Ne =
1

2∆C
(5)

The reference population was set to animals born between 2010 and 2018, with the
sliding window approach set to a 4-year generation interval. In the inferential analysis
pertaining to Ne, two different scenarios were examined (constraints on NEG ≥ 4, i.e.,
NFG ≥ 3). The inbreeding rate (∆F) and effective population size rate (∆Ne) were estimated
by regressing F and Ne on the generation number.

2.2.2. Connectedness Analysis

All pedigree records were used in the analysis of connectedness, but the attention
in this part of the study was paid to 14 flocks that actively participate in the national
selection breeding program. These flocks have been subjected to regular milking controls
and represent a base for previous and future selection work in this sheep breed. The “GCA”
package [27] was used for connectedness analysis. Four genetic connectedness statistics
were estimated:

PEVDind—prediction error variance of differences in EBVs between animals belonging
to different flocks [23]. This metric measures the prediction error variance difference of
breeding values between individuals from different flocks (management units). This is
the most computationally expensive, but most accurate, statistic for this purpose. The
prediction error variance (PEV) of the EBVs was obtained from the diagonal elements of
the inverse of the coefficient matrix. Using this method, the pairwise PEVDs were first
computed at the individual level as follows:

PEVD
(
ûi − ûj

)
=
[
PEV(ûi) + PEV

(
ûj
)
− 2PEC

(
ûi, ûj

)]
=
(

C22
ii − C22

ij − C22
ji − C22

jj

)
∗ σ2

e (6)

and thereafter aggregated and summarized at the unit level as follows:

PEVDi′ j′ =
1

ni′ ∗ nj′
∑ PEVDi′ j′ (7)

PEVDgroup—variance of estimated differences between management units [23]. Using
this method, we first calculated the mean prediction error variance of units i (PEVi′i′ ) and
j (PEVj′ j′ ) and the prediction error covariance (PECi′ j′ ) between units i and j and then
summarized them as follows:

PEVDi′ j′ = PEVi′i′ + PEVj′ j′ + 2PECi′ j′ (8)
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CD—coefficient of determination of the difference between predicted breeding val-
ues [22]. This statistic was obtained by scaling the inverse of the coefficient matrix with
corresponding coefficients from the relationship matrix. CD between individuals i and j
was calculated as follows:

CDij = 1− λ
C22

ii + C22
jj − 2C22

ij

Kii + Kjj − 2Kij
(9)

where Kii and Kjj are the ith and jth diagonal elements of K, and Kij is the relationship
between the ith and the jth animals. The individual average CD was derived from the
average of CD between individuals across two units as follows:

CDi′ j′ = 1− λ ∗
1

ni′ ∗ nj′
∗ ∑

(
C22

i′i′ + C22
j′ j′ − 2C22

i′ j′

)
1

ni′ ∗ nj′
∗ ∑(Ki′i′ + Kj′ j′ − 2Ki′ j′)

= 1−
∑ PEVDi′ j′

σ2
u ∗ ∑

(
Ki′i′ + Kj′ j′ − 2Ki′ j′

) (10)

r—correlation between predicted breeding values of individuals from different
flocks [20] was obtained by transforming the PEV matrix into a prediction error correlation
matrix. For animals i and j, rij was calculated with the formula:

rij =
PEC

(
ûi, ûj

)√
PEV(ûi) ∗ PEV

(
ûj
) (11)

and thereafter summarized at the unit level as follows:

ri′ j′ =
∑ PECi′ j′√

∑ PEVi′i′ ∗∑ PEVj′ j′
(12)

where ∑ PECi′ j′ , ∑ PEVi′i′ , and ∑ PEVj′ j′ are the sums of the elements PECij, PEVii, and
PECjj, respectively.

3. Results
3.1. Quality Control of the Pedigree

The descriptive statistics of the pedigree are presented in Table 1. The average NEG,
NFG, NMG, and PCI were 2.15, 1.46, 3.35, and 0.47, respectively. These low numbers arose
from older animals in the pedigree with insufficient number of recorded ancestors. The
distribution of PCI in classes of size 0.2 was almost uniform, with 40% of the animals in
the pedigree with PCI above 0.6 (Table 2). The correlation between PCI and NEG was 0.96,
indicating that they assess more or less the same, so the distribution of NEG was omitted
from results. The distribution of NFG showed that ~19% animals had three or more fully
traced generations (Table 3).

Table 1. Basic descriptive statistics of the pedigree (n = 6866).

NEG NFG NMG PCI

min 0.00 0.00 0.00 0.00
max 6.72 5.00 12.00 1.00

median 2.13 1.00 3.00 0.50
mean 2.15 1.46 3.35 0.47

NEG, number of equivalent generations; NFG, number of fully traced generations; NMG, number of maximum
known generations; PCI, pedigree completeness index.

The proportion of known ancestors in each generation (pedigree completeness) is
presented on Figure 1. A steep decline in pedigree completeness was observed with
each ancestral generation (~20% until generation 4), with males having negligibly more
informative pedigree than females. The distribution of the mid-parent age of the animals
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in the pedigree is presented on Figure 2. Males and females had a similarly shaped
distribution. Most animals in the pedigree had a mid-parent age of 3 years, and the
generation interval (GI) was estimated to be 3.8 years.

Table 2. Distribution of the pedigree completeness index (PCI).

Lower PCI Upper PCI Frequency % Cumulative %

0 0.2 1588 23.19 23.19
0.2 0.4 1496 21.85 45.04
0.4 0.6 1040 15.19 60.23
0.6 0.8 1222 17.85 78.08
0.8 1 1520 22.2 100.00

Table 3. Distribution of full known generations (NFG).

NFG Frequency % Cumulative %

0 1588 23.19 23.19
1 2011 29.37 52.56
2 1963 28.67 81.23
3 1090 15.92 97.15
4 174 2.54 99.69
5 21 0.31 100

NFG, number of fully traced generations.
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Figure 2. Distribution of mid-parent age of the progeny in the pedigree.

3.2. Reference Population

The reference population was restricted to animals born between 2010 and 2018. The
average PCI in the reference population was 0.74. The distribution of PCI is presented in
the Table 4. Of the total of 2226 animals, ~80% had PCI > 0.6, and ~60% had PCI > 0.8. The
distribution of NFG for the reference population is presented in Table 5. Approximately one
half of the animals (49.46%) had three or more NFG. PCI and NFG were highly correlated
(r = 0.92), therefore only PCI values are reported.
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Table 4. Distribution of the pedigree completeness index (PCI) in the reference population (2010–2018).

Lower PCI Upper PCI Frequency Cumulative % Cumulative %

0 0.2 203 203 9.19 9.19
0.2 0.4 127 330 5.75 14.95
0.4 0.6 123 453 5.57 20.52
0.6 0.8 464 917 21.01 41.53
0.8 1 1309 2226 59.28 100.82

Table 5. Distribution of full known generations (NFG) in the reference population (2010–2018).

NFG Frequency % Cumulative %

0 203 9.19 9.19
1 286 12.95 22.15
2 627 28.4 50.54
3 900 40.76 91.3
4 172 7.79 99.09
5 20 0.91 100

The proportion of known ancestors in the reference population for each generation is
presented in Figure 3. The completeness of the pedigree of the reference population was
improved by imposing constraints on PCI ≥ 0.6, NEG ≥ 4, and NFG ≥ 3.
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3.3. Individual- and Population-Specific Genetic Parameters
3.3.1. Inbreeding

The annual inbreeding change in the reference population was consistent across
different levels of PCI (Figure 4). A consistent change in the magnitude of F for different
levels of PCI nicely reflects how inbreeding in some populations can be underestimated
with a distortion of genetic links to common ancestors. A consistent rate of inbreeding
across different levels of the examined levels of PCI suggests that Ne would not be seriously
compromised in this population for any level of PCI above 0.4. Nevertheless, for the sake
of credibility, the additional constraints were imposed on the animals in the reference
population for the analysis of F and Ne (NEG ≥ 4 or NFG ≥ 3).
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Figure 4. Mean coefficient of inbreeding (F) by year of birth for different levels of PCI.

The distribution of the coefficient of inbreeding (F) in the reference population is
presented in Table 6. Three quarters of the animals (~75%) had F below 10%. F between
11% and 20% was found in 15% of the animals, and an extremely high level of inbreeding
(F > 20%) was determined in 10% of the population. When constraints were imposed
on NEG ≥ 4 and NFG ≥ 3, the distribution of F shifted towards higher values of F, with
marginal differences between FNEG≥4 and FNFG≥3. The average coefficients of inbreeding
per generation (FNEG≥4 and FNFG≥3) are presented in the last column of Tables 7 and 8. The
estimated inbreeding rates per generation ∆FNEG≥4 and ∆FNFG≥3 were −0.0013 ± 0.0005
(p > 0.05) and 0.003 ± 0.0006 (p < 0.05), respectively.

Table 6. Distribution of the estimated coefficient of inbreeding (F) in the reference population (2010–2018).

Reference Population FNEG≥4 FNFG≥3

Lower F Upper F Frequency % Frequency % Frequency %

0.00 0.10 1678 76.0 523 61.67 695 63.64
0.11 0.20 327 14.8 188 22.17 253 23.17
0.21 0.30 149 6.8 89 10.5 96 8.79
0.31 0.40 47 2.1 41 4.83 41 3.75
0.41 0.50 7 0.3 7 0.83 7 0.64

Table 7. Estimated effective population size and coefficient of inbreeding in recent populations
(animals with NEG > 4).

GI (Years) NeNEG≥4 NtNEG≥4 NeNEG≥4/NtNEG≥4 FNEG≥4

1 (2012–2015) 92 903 0.10 0.11
2 (2013–2016) 85 768 0.11 0.11
3 (2014–2017) 78 663 0.12 0.10
4 (2015–2018) 73 499 0.15 0.10
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Table 8. Estimated effective population size in recent populations (animals with NFG > 3).

GI (Years) NeNFG≥3 NtNFG≥3 NeNFG≥3/NtNFG≥3 FNFG≥3

1 (2012–2015) 93 897 0.10 0.10
2 (2013–2016) 87 753 0.11 0.10
3 (2014–2017) 79 638 0.12 0.10
4 (2015–2018) 73 489 0.15 0.11

3.3.2. Effective Population Size

Estimates of effective population size (Ne) for the reference population based on
animals with more than four known equivalent generations (NeNEG≥4) and more than
three known full generations (NeNFG≥3) are presented in Tables 7 and 8. The “sliding
window approach” (4-year generation interval) was used in the analysis of the effective
population size. The estimated NeNEG≥4 ranged from 73 animals in GI = 4 (2015–2018)
to 93 animals in GI = 1 (2012–2015). The NeNFG≥3 ranged from 73 animals in GI = 3
(2014–2017) to 92 in GI = 1 (2012–2015). The estimated rates per generation (∆NeNEG≥4 and
∆NeNFG≥3) were similar in magnitude and direction (∆NeNEG≥4 = −6.6 ± 0.35 (p < 0.01)
and ∆NeNFG≥3 = −4.9 ± 1.8 (p > 0.05)). The estimated ratios NeNEG≥4/NtNEG≥4 and
NeNFG≥3/NtNFG≥3 revealed that Ne accounted for 10% to 15% of the census population.
An incomplete pedigree from either side (paternal or maternal) leads to overestimation of
population-specific parameters such as Ne, due to the inability to detect recent inbreeding.
Therefore, in the absence of recent introgression of foreign genomes (outbreeding), the
estimated Ne obtained for animals in the pedigree with at least three fully traced generations
(NeNFG≥3) better reflects true population parameters in this population.

3.4. Connectedness
3.4.1. PEVD

In the analysis of connectedness, the original Flock IDs were recoded for the sake of
better visibility of results and anonymity of breeders. In addition to these performance
tested flocks, several additional flocks were included in the analysis due to their indirect
contribution to the formation of genetic links across the pedigree.

Estimates of genetic connectedness obtained with the prediction error variance of the
difference (PEVDind(i,j) and PEVDgroup(i,j)) are presented in Figures 5 and 6. The PEVD
statistic ranges from 0 to 1, with smaller values indicating better connectedness.

The estimated pairwise connectedness between flocks ranged from 0.75 to 0.82 (PEVDind)
and from 0.01 to 0.09 (PEVDgroup). The overall PEVDind and PEVDgroup were 0.78 and 0.37,
respectively. The results obtained from these two PEVD methods agreed to some extent,
but there were also some discrepancies in the estimates. The correlation between these
statistics was 0.69 (Figure 7). Flocks 3 and 8 were mutually the most connected flocks
(PEVDind(3,8) = 0.75). Flock 3 was the most connected (PEVDind(3) = 0.76), and flock was
12 the least connected (PEVDind(12) = 0.75) flock with the rest of the population.

Although proclaimed to be the most accurate method to estimate connectedness,
the results obtained with PEVD-derived statistics are difficult to interpret because no
benchmark is defined. One can only adhere to the motto “the fewer the better”, but it is
not possible to deduce from the results whether the connectedness in this population was
sufficient for an unbiased comparison of EBVs of animals belonging to different flocks.

3.4.2. CD

The estimated coefficient of determination (CDind(i,j)) between flocks is shown in
Figure 7. In contrast to the PEVD statistic, the larger the CD, the greater the connectedness.
As determined by PEVDind, flocks 3 and 8 were the most connected (CDind(3,8) = 0.60). In
addition, flock 3 was the most connected, and flock 12 was the least connected to the rest of
the population (CD(3) = 0.617, (CD(12) = 0.597). The overall CD was 0.60.
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CDind(i,j) was highly correlated to PEVDind(i,j) (r ~ −1), moderately correlated to
PEVDind(i,j) (r = −0.67), and uncorrelated to rind(i,j) (r = −0.14) (Figure 8). The benchmark
for these statistic (PEVDind(i,j)) is unknown as well.
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3.4.3. r

The estimated coefficients of prediction error correlation (ri,j) between flocks were
practically 0. The overall r was ~ 0.0001. As for the CD, the larger the (ri,j), the greater
the connectedness. By ri,j, the most connected were flock 1 and 10 and 4 and 10 (r1,4
and r1,10 ~ 0.0025). The most connected flock to the rest of the population was flock 1
(r1 ~ 0.0005), and the least connected one was flock 7 (r7 = 0). The results indicate poor
connectedness in this population, as the benchmark for this statistic (ri,j) is 0.05 for “good”
and r(i,j) = 0.10 for “superior” connectedness.

However, the ri,j was uncorrelated to PEVDind(i,j), PEVDgroup(i,j), and CDind(i,j)
(Figure 8), making this conclusion unreliable.

4. Discussion

The estimation of Ne based on inbreeding rate or coancestry rate from genealogical
data heavily depends on available ancestral information for the reference population.
A thorough quality control of the pedigree in the preliminary analysis was required to
construct a valid reference population, since only informative animals with sufficient
ancestral information fairly contribute to the estimates of population-specific parameters.
The determined steep decline in pedigree completeness with each ancestral generation
was not surprising because a systematic recording scheme in this population started about
two decades ago, with very scarce prior information. However, the determined low PCI
and other quality control parameters (NEG, NFG, and NMG) were related to the very
old animals in the pedigree, while the younger ones, i.e., those born from 2010 onwards,
showed a much better pedigree profile. Therefore, only the latter were included in the
analysis of F and Ne, with additional constraints set at NEG ≥ 4 or NFG ≥ 3.

Effective population (Ne) size has been one of the key parameters in population
and quantitative genetics since its conceptualization [32]. By representing the size of
an idealized population that would experience the same rate of genetic drift as in the
observed population, the Ne impacts inbreeding rate and thus the loss of genetic diversity.
Such a high inbreeding and low effective population size (NeNEG≥4 = NeNFG≥3 = 73)
estimated as the mean rate of increase in coancestry [17] were surprising at first sight, but
not completely unexpected by taking into account the size of the census population. To
be more specific, small populations without a specifically designed mating plan tend to
have proportionally more animals with higher F than larger populations, due to fewer
candidate animals to select from. A decrease of Ne in the recent period has been detected,
regardless of imposed constraints related to pedigree information. The estimated NeNFG≥3
and ∆NeNFG≥3 were very similar to NeNEG≥4 and ∆NeNEG≥4, respectively. From our
point of view, NeNFG≥3 and ∆NeNFG≥3 represent better estimates in this population due
to better detection of direct recent inbreeding. However, pruning of the animals solely on
the number of fully known generations could sometimes lead to underestimation of the
inbreeding load, which led us to retain both obtained results.

The obtained results pertaining to population-specific parameters such as F and Ne
imply that a specially designed long-term breeding plan should be immediately applied in
order to maintain the genetic variability of the breed. On the other hand, selection towards
dairy traits should also be applied in order to provide the cost-effective self-sufficiency of
the breed. The optimum contribution selection approach (OCS), which balances selection
progress and preservation of genetic variability [33], seems the best option as it is the
only way to reconcile these two confronting concepts. With the OCS approach, genetic
contributions of selection candidates to the next generation are optimized to balance
benefits and risks, usually by maximizing genetic gain and restricting mating of closely
related selection candidates.

The desire of breeders to use the entire available genetic pool for selection progress in
this population depends not only on genetic variability, but also on some other important
characteristics of the population such as connectedness between flocks. The impossibility
to disentangle genetic from environmental effects in disconnected flocks using the classical
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pedigree-based BLUP methodology leads to bias in the ranking of animals based on esti-
mated breeding values. This issue has been addressed in many sheep breeding programs
where connectedness between management units tends to be low [34,35].

Analysis of connectedness was conducted to evaluate the possibility of an unbiased
across-flock genetic evaluation system. Four different statistical measures of connectedness
were examined. The PEVD and CD statistics were highly correlated to each other, but un-
correlated to r. It is very important to address here that both the PEVD and the CD statistics,
which were considered to be the most accurate measures of connectedness, have no known
benchmark for evaluation of connectedness. From this point of view, despite being useful
in detecting flocks that tend to share breeding animals more frequently and vice versa, these
results (PEVD and CD) were insufficiently informative to tell us more about bias in ranking
of the animals EBVs. Fortunately, this was not the case for the r connectedness statistic.
By analyzing connectedness in the simulated sheep data, [20] reported that an ri′ j′ of 0.05
corresponds to ~80% reduction in bias and an ri′ j′ of 0.10 to ~90% reduction in bias (in com-
parison to disconnected flocks) and concluded that benchmarks of 0.05 represent “good”
connectedness, and benchmarks of 0.10 indicate “superior” connectedness, irrespective
of heritability. Therefore, based the obtained ri′ j′ it turned out that connectedness in this
sheep population has not been at a sufficient level for unbiased ranking of EBVs, which has
been caused by the absence of artificial insemination and infrequent exchange of breeding
animals between flocks. In order to increase the link between flocks in this population,
some of the long-term specially designed breeding schemes need to be implemented. The
best-known schemes to provide connections between different management units are the
rotation of rams between herds (circle rams) and the sire references scheme [36,37].

The results of this study showed that this sheep population is experiencing the un-
favorable loss of genetic variability common in small sheep population under selection.
Urgent action is required to slow down this process and create the necessary conditions
(connectedness) to successfully utilize the entire genetic pool of the breed in a long-term se-
lection. The transition to genomic selection would probably be beneficial for both addressed
issues. In terms of maintaining genetic variability, it should provide more accurate infor-
mation on individual and population genetic parameters. In terms of genetic evaluation
and selection, it should compensate for poor connectedness between flocks [25,26].

5. Conclusions

Deep pedigree analysis revealed a decreasing rate of effective population size and
unfavorable population structure (genetically disconnected flocks) for unbiased across-
flock genetic evaluation. The optimum contribution selection appears to be the most
appropriate selection strategy for this population to balance selection gain with loss of
genetic variability. Structural weaknesses of the population should be improved in order
to exploit the entire available genetic pool of the breed in the future and to benefit as much
as possible from investments in genomic selection.
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