

Phenotypic and genetic correlations between milk yield and type traits for Holstein cattle in Croatia

Špehar M.¹, Štepec M.², Lučić M.¹, Ivkić Z.¹

¹Croatian Agricultural Agency, Ilica 101, 10000 Zagreb, Croatia ²University of Ljubljana, Biotechnical faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia

Introduction

- Associations between milk production and type traits
- Great economic importance
 - To obtain high milk production from healthy, fertile cows
 - To reduce production costs (veterinary care and medications)
 - To increase the productive life of cows in the

herd

Objective

- To estimate phenotypic and genetic parameters
 - Milk yield (MY)
 - Type traits

angularity - AN

udder depth – UD

- First lactating Holstein cows

Material

- Central database of Croatian Agricultural Agency
- Calvings from 2004 to 2015
- Records
 - Test-day \longrightarrow 242,088
 - -Type \longrightarrow 14,811
- Pedigree
 - 46,660

Descriptive statistics

Trait	n	\overline{x}	sd	min	max
MY	242,088	25.10	8.84	3.00	50.00
AN	14,811	6.36	1.37	0.80	10.11
UD	14,810	5.70	1.43	0.02	10.42

Pedigree structure

Animals with phenotypic records	14,811
Non-base animals	45,367
-both parents known	30,359
-only sire known	12,668
-only dam known	2,340
Base animals	1,293
Proportion of base animals (%)	3
Total number of animals	46,660

Method

- Data preparation
 - SQL (SAS/STAT)
 - Phenotypic correlations
- Bivariate animal model
- Variance components estimation (VCE-6)

Models

Effect / Trait	MY	AN, UD
Fixed		
Calving season	+	
Region	+	
Ali / Schaeffer lact. curve nested within parity	+	
Age at first calving	QR*	+
Age at scoring		+
Scoring season		+
Classifier		+
Time after milking		+
Random		
Additive genetic effect	+	+
Permanent environment	+	
Contemporary group (Herd-year of testing)	+	

Variance ratio and correlations - phenotypic and genetic

	MY	AN	UD
MY	0.21	0.09	-0.18
AN	0.51	0.24	
UD	-0.41	27	0.18

Conclusions

- Results indicate that higher yielding cows are more angular
- High udders are genetically associated with small volumes and lower production
- Genetic antagonism observed between MY and UD should be considered to avoid deterioration of these or correlated traits

