
ABSTRACT

Significant advances in livestock traits have been 
achieved primarily through selection strategies targeting 
variation in the nuclear genome, with little attention giv-
en to mitogenome variation. We analyzed the influence 
of the mitogenome on milk production traits of Holstein 
cattle in Croatia based on strategically generated next-
generation sequencing data for 109 cows pedigree-linked 
to 7115 milk production records (milk, fat and protein 
yield) from 3006 cows (first 5 lactations). Since little is 
known about the biology of the relationship between mi-
togenome variation and production traits, our quantita-
tive genetic modeling was complex. Thus, the proportion 
of total variance explained by mitogenome inheritance 
was estimated using 5 different models: (1) cytoplasmic 
model with maternal lineages (CYTO), (2) haplotypic 
model with mitogenome sequences (HAPLO), (3) amino 
acid model with unique amino acid sequences (AMINO), 
(4) evolutionary model based on a phylogenetic analysis 
using Bayesian Evolutionary Analysis Sampling Trees 
phylogenetic analysis (EVOL), and (5) mitogenome SNP 
model (SNPmt). The polygenic autosomal and X chro-
mosome additive genetic effects based on pedigree were 
modeled, together with the effects of herd-year-season 
interaction, permanent environment, location, and age 
at first calving. The estimated proportions of phenotypic 
variance explained by mitogenome in 4 different models 
(CYTO, HAPLO, AMINO, and SNPmt) were found to 
be substantial given the size of mitogenome, ranging 
from 5% to 7% for all 3 milk traits. At the same time, a 
negligible proportion of the phenotypic variance was ex-
plained by mitogenome with the EVOL model. Similarly, 

in all models, no proportion of phenotypic variance was 
explained by the X chromosome. Although our results 
should be confirmed in other dairy cattle populations, 
including a large number of sequenced mitogenomes and 
nuclear genomes, the potential of utilizing mitogenome 
information in animal breeding is promising, especially 
as the acquisition of complete genome sequences be-
comes cost-effective.
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INTRODUCTION

Domestic cattle have profoundly influenced develop-
ment of modern human societies, consolidating their sta-
tus as the world’s economically most important domestic 
animal. This central importance is particularly evident in 
the increasing demand for high-yielding breeds, with the 
emphasis on dairy cows. Over the last century, the milk 
yield per lactation has increased many times over (Britt 
et al., 2018, 2021), emphasizing the indispensable role of 
these animals in satisfying human needs and promoting 
agricultural progress.

Meeting the elevated production demands of high-
producing dairy cows requires a significant amount of 
energy, which emphasizes the importance of bioenergetic 
homeostasis and lactogenesis in adapting to fluctuations 
in energy requirements and physiological processes dur-
ing the lactation period (Cheng and Ristow, 2013; Wei-
kard and Kuehn, 2018). The pivotal role in maintaining 
metabolic balance, essential for high milk production, 
lies with the mitochondria, the double-membrane-bound, 
semi-autonomous organelles in the cytoplasm of cells. 
The mitochondria are often referred to as the “power-
house” of cells and make a significant contribution by 
generating around 90% of adenosine triphosphate (ATP) 
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through oxidative phosphorylation from carbohydrates 
and fatty acids (Wilson et al., 1985; Hadsell et al., 2011; 
Cheng and Ristow, 2013; Favorit et al., 2021). The im-
portance of mitochondria is particularly evident when 
the high energy requirements for milk production com-
pete for resources, potentially disrupting reproductive 
processes, resilience and overall health (Monzel et al., 
2023). In addition, the role of mitochondria goes beyond 
energy provision and includes multifunctional tasks such 
as calcium signaling, regulation of membrane potentials, 
control of cell metabolism and involvement in apoptosis 
(Ballard and Melvin, 2010; Monzel et al., 2023).

Each cell contains several hundred to thousands of 
mitochondria, the inheritance of which in cattle, as in 
other mammals, is exclusively along the maternal lin-
eage (Hutchison et al., 1974). The cattle mitogenome is 
a small circular molecule spanning 16,338 bp in length 
(Anderson et al., 1982), characterized by semi-conser-
vative self-replication and exhibits the unique property 
of rapid evolution without recombination, as highlighted 
in many studies (Harrison, 1989; Javonillo et al., 2010; 
Prosdocimi et al., 2012; Castro Paz et al., 2014). It con-
sists of 37 genes without introns, 13 of which encode re-
spiratory chain proteins involved in energy metabolism, 
2 ribosomal and 22 transfer RNAs essential for protein 
synthesis (Boore, 1999; Wallace et al., 1999), while 
a non-coding region is known as the control region or 
D-loop. Variation in the mitogenome is represented by 
unique sequences or haplotypes that have been shaped by 
mutations, drift and selection over a long period of time 
and passed on by maternal ancestors. According to their 
phylogenetic origin, unique cattle haplotypes are catego-
rized into several highly divergent haplogroups (I, C, R, 
P, Q, T1, T2, T3, T4 and T5), which are commonly used 
in domestication studies (Bradley et al., 1996; Achilli et 
al., 2008; Zhang et al., 2013; Verdugo et al., 2019) and 
diversity studies (Cubric-Curik et al., 2022; Dorji et al., 
2022).

The effects of mitogenome variation on complex traits 
in humans are closely related to human health and have 
been well-investigated in many studies (Wallace, 2005, 
2015; Gorman et al., 2016). In particular, various mitoge-
nome mutations or haplotypes have been associated with 
several human diseases, e.g., cancer (Shen et al., 2011), 
diabetes (Liou et al., 2012), Alzheimer's disease (Ridge 
et al., 2012), Parkinson’s disease (Ghezzi et al., 2005), 
and Leber hereditary optic neuropathy (Yu-Wai-Man et 
al., 2009).

In contrast, the effects of mitogenome variation in 
cattle have been studied in the context of production 
traits, while the first disease caused by a mutation in the 
mitogenome has only recently been reported (Novosel et 
al., 2022). However, most studies evaluating the effects 
of mitogenome variation on economically important traits 

such as milk production were conducted in the late 20th 
century. These studies were based on “cytoplasmic mod-
els,” which assume that all observed maternal lineages in 
the pedigree have different mitogenome haplotypes (Bell 
et al., 1985; Kennedy, 1986; Schutz et al., 1992; Boettcher 
and Gibson, 1997; Albuquerque et al., 1998; Roughsedge 
et al., 1999). In these studies, the “cytoplasmic effects” 
explained from 0 to 10% of the phenotypic variability. In 
addition, Boettcher et al. (1996b) simulated the effects of 
maternal lineages from the normal distribution, analyzed 
the data with fixed and random models and concluded 
that random (cytoplasmic) models estimate the effects of 
the different maternal lineages more accurately. On the 
other hand, there are not many studies in which the ef-
fects of mitogenome polymorphism and milk production 
were estimated using genomic data because sequences 
data was available only for short regions such as D-loop, 
due to technical limitations in obtaining complete mi-
togenomes for large numbers of individuals (Brown et 
al., 1989; Schutz et al., 1994; Boettcher et al., 1996a; Qin 
et al., 2012). While nuclear genome information is now 
widely used to estimate breeding values (Boichard et al., 
2015; Weigel et al., 2017; Cole and VanRaden, 2018), 
the role of the complete mitogenome in improving milk 
production and has not yet been fully explored. Recent 
technological advances, particularly the emergence of 
next-generation sequencing (NGS), have opened up 
the possibility of efficiently genotyping large numbers 
of complete mitogenomes at low cost. Moreover, in-
formative single nucleotide polymorphisms (SNPs) of 
the mitogenome have been integrated into SNP arrays 
(Brajkovic et al., 2023) or might be extracted from whole 
genome sequences with low coverage (Sanglard et al., 
2022b). These resources provide a solid foundation for 
further research on the utilization of complete mitoge-
nome information in dairy cattle breeding.

The main objective of this study was to evaluate the ef-
fects of inherited mitochondria on milk production traits 
in cattle using the complete mitogenome sequence infor-
mation. Analyses were performed on Croatian Holstein 
cows, with a focus on a comprehensive modeling of varia-
tion across the complete mitogenome. More specifically, 
our focus was on estimating the proportion of phenotypic 
variance explained by mitogenome variation (m2) using 
5 different models: (1) cytoplasmic model with maternal 
lineages (CYTO), (2) haplotypic model with mitogenome 
sequences (HAPLO), (3) amino acid model with unique 
amino acid sequences (AMINO), (4) evolutionary model 
based on a phylogenetic analysis using Bayesian Evolu-
tionary Analysis Sampling Trees (BEAST) (EVOL), and 
(5) mitogenome SNP model (SNPmt). In assessing the 
relationship between inherited mitochondrial variation 
and milk production, we are unaware of a single study 
that has used similarly complex modeling and/or a study 
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that has used complete mitogenome information on a 
large scale. Furthermore, our decomposition of genetic 
variance into variance components within and between 
mitogenome regions is novel and opens new perspectives 
for analyzing the effects of non-recombining mitoge-
nome SNP polymorphism on economically important 
production traits.

MATERIALS AND METHODS

Data and sampling strategy of maternal lineages

Pedigree and lactation data of Holstein cattle were pro-
vided by the Croatian Agency for Agriculture and Food, 
a national institution responsible for milk recording and 
estimation of genetic parameters. For pedigree verifica-
tion, sampling strategy and maternal lineage imputation, 
MaGelLan 1.0 (Maternal Genealogy Lineage Analyzer) 
software (Ristov et al., 2016) was used to strategically 
select 109 Holstein cows from 20,973 lactating animals 
based on the 2016 report, with the aim that the resulting 
maternal lineage coverage is as diverse as possible. The 
109 Holstein cows included in the sample thus represent 
109 maternal pedigree lineages according to the pedigree 
data and comprise a total of 3,040 individuals with 7,576 
records within the first 10 lactations, with each maternal 
pedigree lineage comprising 10 to 74 individuals. The 
pedigree for our 3,040 individuals comprised 6,336 in-
dividuals. The descriptive statistics for milk production 
traits over the first 5 lactations (305 d) used in the repeat-
ability model, comprised 3,006 individuals and resulting 
in a total of 7,115 records, are presented in Table 1.

Sampling description

Milk, hair and tissue samples were collected from 
small (10 to 30 cows), medium (30 to 100 cows) and 
large (over 100 cows) farms registered with the Ministry 

of Agriculture. The samples were distributed across 7 
counties and 40 farms in Croatia (Figure 1). A total of 
109 samples were collected, including 86 milk samples, 
22 hair samples, and one ear tissue sample. A strategy for 
the collection of milk samples as a non-invasive method, 
but taking into account the required amount of milk, stor-
age temperature, liquid or pelletized form and storage 
time for the extraction of good quality DNA, is described 
in Brajkovic et al. (2018).

Molecular genetic analyses and mitogenome 
diversity

The molecular genetic analysis and software with 
information on i) DNA isolation, ii) mitogenome ampli-
fication by 3-step PCR, iii) DNA library preparation, iv) 
sequencing platform, v) the bioinformatic analysis of the 
Fastq sequence, vi) the calculation of the mitogenome 
depth and breadth of coverage, and vii) list of GenBank 
accession numbers are presented in our phylogenetic 
meta-analysis of the bovine mitogenome (Cubric-Curik 
et al., 2022) and in Table S1.

The diversity of the complete mitogenome and the 
diversity of 27 functional regions were summarized with 
the number of variable sites (S), the total number of 
mutations (Eta), the nucleotide diversity per site (π), the 
average number of nucleotide differences (k), the num-
ber of haplotypes (h) and the haplotype (gene) diversity 
(Hd). The summary of genetic parameters was calculated 
using DNAsp v6 (Rozas et al., 2017) and the software 
Arlequin v. 3.5.2.2. (Excoffier and Lischer, 2010).

Haplotype construction, classification, and 
phylogenetic analysis

To test the influence of mitogenome polymorphisms 
on phenotypic variance in milk traits (milk, fat, and 
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Table 1. Descriptive statistics for milk production traits

Lactation  Variable (kg) N Mean Standard deviation Minimum Maximum

1st  Milk 2390 6733 1582 1673 11980
 Fat 2389 258 65 83 589
 Protein 2388 220 52 82 386

2nd  Milk 1984 7440 1868 1537 11960
 Fat 2020 291 82 81 598
 Protein 2019 247 62 85 447

3rd  Milk 1336 7482 1916 2201 11982
 Fat 1360 293 84 89 586
 Protein 1359 246 64 91 458

4th  Milk 835 7344 2012 1770 11995
 Fat 850 288 87 94 581
 Protein 849 241 66 82 418

5th  Milk 484 7168 1968 2010 11962
 Fat 488 277 83 81 515
 Protein 486 232 62 83 428
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protein yield) of Holstein cattle, 3 types of haplotypes/
haplogroups were used. First, mitogenome haplotypes 
were constructed based on all variable sites of the entire 
nucleotide sequences. Analyses were performed using 
Clustal Omega software (Sievers et al., 2011), MEGA7 
software (Kumar et al., 2016) and DNAsp v6 software 
(Rozas et al., 2017), see also Table S1. Second, amino 
acid haplotypes were constructed based on a sequence of 
3,828 amino acids translated from a nucleic acid sequence 
of 11,484 bp and comprising 13 protein-coding mitoge-
nome regions with a total of 59 variable sites. Analyses 
were performed using MEGA7 software (Kumar et al., 
2016) and SAS (SAS Institute, 2012), see also Table S1.

Third, evolutionary haplogroups of Holstein mitoge-
nomes were formed based on an MCMC Bayesian evo-
lutionary analysis performed using the BEAST v1.4.3 
software package (Suchard et al., 2018) as part of a com-
prehensive phylogenetic meta-analysis of cattle (Figure 
3) described in (Cubric-Curik et al., 2022). The 109 
Holstein mitogenomes were grouped into 10 subclades 
representing evolutionary haplogroups, see Table S1 for 
more details.

To better understand the origin of mitogenome haplo-
types and their estimated effect on milk production traits, 
we classified our mitogenomes into specific haplogroups 
using the MitoToolPy program (Peng et al., 2015) (Table 
S1, column “MTP”), which included 278 mitogenomes 
of the genus Bos as a reference base for the determi-
nation of haplogroups (266 for Bos taurus, 2 for Bos 

primigenius and 10 for Bos indicus). To comprehensively 
analyze our Holstein mitogenomes in a broader context, 
a median joining (MJ) network (Bandelt et al., 1999) was 
constructed using PopArt (Leigh and Bryant, 2015) to 
visualize the phylogenetic relationship with an additional 
70 nucleotide sequences (see Table S2) from GenBank 
- NCBI (GenBank) (Clark et al., 2016), representing 
62 haplotypes distributed across 8 distinct haplogroups 
(T1, T2, T3, T4, T5, P, Q, R). Arleqin 3.5 software (Excof-
fier and Lischer, 2010) was used to create the haplotype 
frequency matrix for PopArt (Leigh and Bryant, 2015) 
input.

Quantitative genetic analyses

We employed 5 different models to estimate the mag-
nitude of the association between mitogenomes and milk 
production traits. In each of the 5 models - CYTO, HAP-
LO, AMINO, EVOL, and SNPmt - we applied a Bayes-
ian repeatability animal model that included the first 5 
lactation records. This comprehensive analysis included 
3 evaluated traits: milk, fat, and protein yield, resulting 
in a total of 15 assessments across 5 models. Our model 
can be described by:

 y = Xb + Zcc + Zss + Zi(a + x + m + p) + e,

where y is ny × 1 vector of ny = 7,115 milk, fat, and pro-
tein 305- yields (standardized to zero mean and unit vari-
ance); X is ny × nb design matrix for the nb = 12 effects 
of the overall mean, the interaction between the number 
of calving and age at calving covariate and b is the cor-
responding vector of effects;; Zc is ny × nc design matrix 
for nc = 2,654 contemporary groups defined as herd-
year-season effects c ~N 0 I, σc

2( ) where the calving sea-
sons within a year were defined as: Spring (March to 
May), Summer (June to August), Autumn (September to 
November) and Winter (December to February); Zs is ny 
× ns design matrix for ns = 807 herd location (spatial) 
effects s ~N 0 S, ,σ ρa

2( )




 with S being Matérn covariance 

function based on Euclidean distances between the herd 
locations and parameterized with variance σs

2 and range ρ 
(see Selle et al., 2020 and references therein for further 
details); Zi is ny × ni design matrix for ni = 6336 indi-
vidual animal effects with the following components: a 
~N 0 A, σa

2( ) the additive genetic effect of autosomal DNA 
with pedigree-relationship matrix A (Henderson, 1976); 
x ~N 0 X, σx

2( ) the additive genetic effect of X chromosome 
DNA with pedigree-relationship matrix X (Grossman 
and Eisen, 1989; Fernando and Grossman, 1990); m the 
additive genetic effect of mitochondrial DNA modeled 
with different assumptions described below; p ~N 0 I, σp

2( ) 
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Figure 1. Geographical representation of the samples: The blue cir-
cles (real), represent the location of the sampled farms where milk/hair 
was collected covering 109 maternal lineages/mitogenomes, while the 
orange circles (imputed) represent the location of the farms for all cows 
and their milk records used in the analyses based on pedigree imputation 
of the previously collected 109 mitogenomes to all animals within the 
maternal lineages.



Journal of Dairy Science Vol. TBC No. TBC, TBC

the permanent environmental effect; and e ~N 0 I, σe
2( ) the 

residual; and I’s are the identity matrices of correspond-
ing dimensions.

The 5 models differed in their representation of mi-
togenome effects. Mitogenome is a circular haplotype, so 
we denote the effect of differently defined mitogenome 
haplotypes with hm where subscript m denotes a model. 
In the CYTO model, the mitogenome effects were mod-
eled by considering the effect of 109 maternal pedigree 
lineages hc, which were assumed to be independent: m = 
Zchc, where hc ~N 0 I, h hc c

σ2( ) and Zc is mapping cows’ mi-
tochondrial effect to their maternal pedigree lineage ef-
fect. The HAPLO model fitted the effect of 96 unique 
complete mitogenome haplotype sequences hh: m = Zhhh, 
where hh ~N 0 I, h hh h

σ2( ) and Zh is mapping cows’ mito-
chondrial effect to their mitogenome haplotype effect, 
assuming that different nucleotide cbinations form dif-
ferent haplotypes that influence mitochondrial efficiency 
and consequently milk production. This is the same as-
sumption as in the CYTO model, but more precise, since 

with many maternal pedigree lineages in the study it is to 
be expected that some have the same mitogenomes, but 
we do not observe that information for the CYTO model 
due to finite pedigrees. The AMINO model assumed that 
mutations at synonymous and non-protein coding nucle-
otides do not contribute to the differences in milk pro-
duction which led to 48 amino acid sequences or differ-
ent “AMINO haplotypes” ha: m = Zaha, where ha 
~N 0 I, h ha a

σ2( ) and Za is mapping cows’ mitochondrial ef-
fect to their AMINO haplotype effect. This assumption 
implied that non-synonymous mutations lead to the syn-
thesis of different amino acid sequences, which all 
jointly influence mitochondrial effect. The EVOL model 
fitted the effect of 10 phylogenetic haplogroups he, sug-
gesting that long-term selection or adaptations to “an-
cient” mutations and environments represents mitochon-
drial effects: m = Zehe, where he ~N 0 I, h he e

σ2( ) and Ze is 
mapping cows’ mitochondrial effect to their phylogenetic 
haplogroup effect. Finally, the SNPmt model fitted the 
effect of 359 SNP mutations in mitogenome α on varia-
tion in milk production: m = W α, where α ~N 0 I, h ha a

σ2( ) 
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Figure 2. Median joining network representing the phylogenetic relationship (mutational differences) of all complete mitogenomes found in 
GeneBank and assigned to the Holstein breed (labeled with the letters HC if they were Croatian Holstein and HW if they were found in populations 
of other Holstein animals), together with several haplotypes representing cattle with other haplogroups (labeled with the letter O as representatives 
of other breeds). The plus sign within the haplotypes indicates the 10 percent of the best haplotypes with the largest random solution effects for milk, 
fat and protein, and the minus sign within the haplotypes indicates the 10 percent of the worst haplotypes with the smallest random solution effects.
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and W is ni × nsnp mitogenome allele matrix with ele-
ments equal to 0 for reference alleles and 1 for alterna-
tive alleles.

All models were fitted using tegrated Nested Laplace 
Approximation (INLA) as implemented in the R pack-
age R-INLA (v24.05.01–1; Rue et al., 2009) using R 
software (v4.4.0; R Core Team, 2021) and RStudio 
(v2024.4.0.735; RStudio Team, 2020). INLA, known 
as the Bayesian numerical approximation method, com-
putes marginal posteriors for all model parameters. The 
main reason for using the R-INLA package was that it 
can model spatial effects through the stochastic partial 
differential equation (SPDE) approach of Lindgren et al. 
(2011). This approach can accommodate geographically 
referenced data, including areal and geostatistical data 
as well as spatial point process data (Lindgren and Rue, 
2015). Use of this spatial modeling approach was deemed 
important to correct for spatial variation that could other-
wise be captured by mitochondrial/maternal lineages in 
different regions of the country. The SPDE approach in-
volved: i) construction of a mesh based on the locations 
of individual herds/farms, ii) delineation of spatial barri-
ers given the specific shape of the country, iii) definition 
of a projection, iv) creation of a projector matrix, and v) 
configuration of the barrier model (Bakka et al., 2019). 
See Selle et al. (2020) for use of spatial modeling in 
quantitative genetics. Pedigree-based relationship matri-
ces for autosomal and X chromosomes were constructed 
using R package nadiv (Wolak, 2012) and provided to the 
R-INLA call. All R code for data manipulation and model 
fitting including data will be available at GitHub and Ze-
nodo (at the moment please use the Dropbox link: https: 
/ / www .dropbox .com/ scl/ fo/ l6ez8eykl1o03sw546z8a/ 
ANYdV4BHjJ1H9ECO1iFTp2A ?rlkey = 
csknoxhk27ifv0nhgf8oedtic&dl = 0).

Decomposition of genetic (co)variance components

We were particularly interested in estimating how 
much of the total phenotypic variance can be explained 

by variance between mitogenome effects m
y

2
2

2
=
σ

σ
 using 

different models. Specifically, we calculated the follow-
ing parameters for each milk production trait: i) m2

CYTO, 
the proportion of phenotypic variance explained by vari-
ance between maternal lineages σhc

2 , ii) m2
HAPLO the pro-

portion of phenotypic variance explained by variance 
between mitogenome haplotype sequences σhh

2 , iii) 
m2

AMINO, the proportion of phenotypic variance explained 
by variance between AMINO haplotypes σha

2 , iv) m2
EVOL 

the proportion of phenotypic variance explained by vari-
ance between phylogenetic haplogroups σhe

2 , and v) m2
SNP 
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Figure 3. Distributions of haplotype effects in phenotypic standard 
deviations for milk production traits in the Croatian Holstein population.

https://www.dropbox.com/scl/fo/l6ez8eykl1o03sw546z8a/ANYdV4BHjJ1H9ECO1iFTp2A?rlkey
https://www.dropbox.com/scl/fo/l6ez8eykl1o03sw546z8a/ANYdV4BHjJ1H9ECO1iFTp2A?rlkey
https://www.dropbox.com/scl/fo/l6ez8eykl1o03sw546z8a/ANYdV4BHjJ1H9ECO1iFTp2A?rlkey
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the proportion of phenotypic variance explained by vari-
ance between mitogenome effects modeled with SNPs 
σh s_ .
2  In the calculation of m2

SNP, the variance between 

mitogenome effects σh s Var m Var W
a_

2 = ( ) =







 included 

all genic/SNP locus variances as well as both intragenic 
covariances (between SNP loci within defined mitoge-
nome genes/regions) and intergenic covariances (be-
tween SNP loci between defined mitogenome genes/re-
gions). This innovative approach, inspired by the concept 
of Lara et al. (2022) for autosomal genomic analysis of 
genetic variance, was applied here for the first time on 
mitogenomes. This approach is important because of the 
lack of recombination in mitogenomes. Since the com-
plete mitogenome comprises 37 coding genes/regions 
and one non-coding region, our analysis allowed us to 
estimate and compare the contribution of each gene/re-
gion to the total mitogenome variance σh s_ .

2

RESULTS AND DISCUSSION

Mitogenome diversity and classification

For a highly selected breed, the diversity of complete 
mitogenomes (16,344 bp long sequence) analyzed in 109 
Holstein cows was unexpectedly high (Table 2).

A total of 96 different haplotypes (h) were observed, 
corresponding to a haplotype diversity (Hd) of 0.997, 
with 358 variable sites (S), a nucleotide diversity per site 
(π) of 0.00064 and an average number of nucleotide dif-
ferences (k) of 10.509.

The observed diversity in the different functional 
regions was quite variable, with the highest diversity 
observed in the D-loop region (S = 74, π = 0.00376, k = 
3.425, h = 65, Hd = 0.948), followed by ND5 (S = 43, k 
= 1.003, h = 33, Hd = 0.61) and ND4 (S = 35, k = 0.804, 
h = 32, Hd = 0.588), while the lowest diversity was ob-
served in tRNA-Leu (S = 1, k = 0.018, h = 2, Hd = 0.018) 
and other tRNA regions. This agrees with the diversity 
observed in the global data set analyzed by Cubric-Curik 
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Table 2. Mitogenome diversity in 109 Holstein cows across different functional genes/regions

Functional gene/region Length (bp) S Eta π k h Hd

12S 958 13 13 0.00034 0.328 14 0.303
16S 1571 18 18 0.00027 0.420 19 0.364
ATP6 681 12 12 0.00059 0.400 14 0.318
ATP8 201 6 6 0.00081 0.163 7 0.158
COX1 1545 25 25 0.00042 0.653 22 0.486
COX2 684 10 10 0.00037 0.255 10 0.192
COX3 804 16 16 0.00054 0.437 17 0.334
CYTB 1140 22 22 0.00042 0.476 22 0.407
D-loop 912 74 75 0.00376 3.425 65 0.948
D-loop beginning 364 12 12 0.00244 0.888 13 0.643
D-loop end 548 62 63 0.00464 2.538 55 0.888
*Inter CYTB tRNA-Thr 3 1 1 0.00612 0.018 2 0.018
*Inter tRNA-Ser tRNA-Asp 5 1 1 0.00367 0.018 2 0.018
ND1 957 21 21 0.00051 0.493 19 0.349
ND2 1044 22 22 0.00057 0.600 22 0.487
ND3 357 7 7 0.00041 0.146 7 0.125
ND4 1425 35 35 0.00056 0.804 32 0.588
ND4L 297 4 4 0.00043 0.127 5 0.124
ND5 1821 43 43 0.00055 1.003 33 0.610
ND6 528 16 16 0.00089 0.470 15 0.376
tRNA-Arg 69 1 1 0.00027 0.018 2 0.018
tRNA-Asn 73 1 1 0.00025 0.018 2 0.018
tRNA-Cys 67 1 1 0.00132 0.088 2 0.088
tRNA-Gln 72 1 1 0.00025 0.018 2 0.018
tRNA-Glu 69 1 1 0.00027 0.018 2 0.018
tRNA-Leu 75 1 1 0.00024 0.018 2 0.018
tRNA-Met 68 1 1 0.00027 0.018 2 0.018
tRNA-Ser 60 2 2 0.00091 0.055 3 0.054
tRNA-Thr 70 2 2 0.00052 0.037 3 0.037
tRNA-Val 67 1 1 0.00027 0.018 2 0.018
Mitogenome 16344 358 359 0.00064 10.509 96 0.997

S - Number of variable sites; Eta – the total number of mutations; π - Nucleotide diversity (per site); k - Average 
number of nucleotide differences; h - Number of Haplotypes; Hd - Haplotype (gene) diversity; The D-loop region 
is additionally subdivided into the D-loop beginning and the D-loop end (hypervariable regions 1 and 2) due to 
their specificity of connection and the inscription of entire mtDNA replication;*Inter CYTB tRNA-Thr region 
according to the referent mitogenome (GenBank accession number V00654) does not belong either to the CYTB 
or tRNA-Thr and the same applies to Inter tRNA-Ser tRNA-Asp region. Other tRNA regions that did not show muta-
tions are not included in the table.
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et al. (2022), in which the D-loop was the most diverse 
mitogenome region, while the observed diversity of the 
NDH5 gene was among the highest.

The phylogenetic relationship (mutational differences) 
of all complete mitogenomes observed in the Holstein 
breed (haplotypes reported in GeneBank) together with 
several haplotypes representing all other existing hap-
logroups is shown in Figure 2.

Overall, most haplotypes of Holstein cattle (94%) not 
sampled in Croatia were classified as T3, which was ex-
pected as T3 is the predominant haplogroup characteristic 
of cattle of European origin (Figure 2), while only one 
T1 (Italy) and one T4 (Korea) haplotype were found (de-
tailed description in Table S2). In the Croatian Holstein 
population, following the pattern observed for Holstein 
cattle, 91 haplotypes (95%) were assigned to the T3 hap-
logroup, while we also identified 2 T2 haplotypes, one T1 
haplotype and one T5 haplotype. According to Brajkovic 
et al. (2022), the presence of T1, T2, and T5 haplotypes 
is most likely the consequence of genetic upgrading of 
local Croatian breeds with Holstein bulls, as T1, T2, and 
T5 haplotypes were observed in Istrian cattle (T1 with 
6.7%), Croatian Busha cattle (T1 with 24% and T2 with 
32%), and Slavonian Syrmian Podolian cattle (T5 with 
25%)

Variance components and quantitative genetic 
parameters

The results of the quantitative genetic analysis of phe-
notypic variation for milk production traits in the Croa-
tian Holstein breed are presented in Table 3 for different 
models analyzed (CYTO, HAPLO, AMINO, EVOL, and 
SNPmt). In addition to the estimated variance compo-
nents, the contribution of mitochondrial variation was 
presented as a proportion of phenotypic variation along-
side the additive contribution of autosomal chromosomes 
(h2), the additive contribution of the X chromosome 
(x2), and other random environmental effects presented 
as contemporary group and permanent environment ef-
fects. The estimated heritability (phenotypic variance 
explained by the additive autosomal component) was 
within the range found in less complex modeling of the 
same data set (Brajkovic, 2019). Specifically, the esti-
mated heritability for milk yield was between 0.22 and 
0.32 for all models (CYTO, HAPLO, AMINO, EVOL, 
and SNPmt), with estimated heritability for fat yield 
in a similar range, between 0.22 and 0.29, and for pro-
tein yield between 0.23 and 0.33. For all 3 milk traits, 
the highest heritability was observed in the EVOL and 
SNPmt model, while the CYTO and HAPLO models had 
the lowest heritability. This could be consistent with Van 
Vleck’s recommendation: “Heritability (additive direct) 
can be overestimated from covariances between rela-

tives with the same cytoplasm if cytoplasmic effects on 
the trait are real and if those effects are ignored.” (Van 
Vleck, 1993).

The estimated proportion of phenotypic variance of 
milk yield, fat yield and protein yield captured by mi-
tochondrial variation (m2) was significant in all models 
except the EVOL model, where all estimates were zero or 
negligible and non-significant (Table 3).

These results suggest that grouping mitochondrial 
effect into main evolutionary haplogroups is missing 
variation within these groups. In all other models, the 
estimated m2 for all 3 traits was significantly positive and 
ranged from 0.05 to 0.07. The highest estimates, either 
0.06 or 0.07, were consistently obtained for all 3 traits 
for HAPLO model, while estimates obtained with CYTO 
and AMINO models were between 0.05 (fat yield) to 
0.07 (protein yield). Slightly lower estimates (0.05) were 
obtained in SNPmt models for all 3 traits.

To our knowledge, this was the first time that mito-
chondrial and additive effects of the X chromosome were 
modeled together. This was important to avoid confound-
ing between capturing variation due to the X chromosome 
and the mitogenome. For all 3 milk production traits, 
there was no significant proportion of phenotypic vari-
ance explained by X chromosome additive effects (x2). 
However, null estimates are not biologically plausible, 
as it can be assumed that genes on the X chromosome 
contribute to small variations in milk production traits 
(Sanchez et al., 2023). It is noteworthy that in only one 
of our models (R-INLA version of 21.11.22) x2 was be-
tween 0.01 and 0.04, but this did not affect the estimated 
m2 values for any of the 3 milk production traits analyzed 
(see Supplementary Table S5). We attribute the instabil-
ity of the X chromosome effects to the high correlation 
between the classical additive relationship matrix and the 
relationship matrix of sex (X chromosome), as evidenced 
by a Mantel test correlation of 0.955 (P < 0.001 after 100 
permutations). To exclude possible confounding between 
X chromosome and mitogenome effects, we performed 
additional analyses excluding only the mitogenome 
effects. As we did not observe nonzero x2 values, we 
concluded that our m2 estimates were not influenced by 
confounding with X chromosome effects.

The random effects of the contemporary group and 
the permanent environment were stable in all different 
mitochondrial models.

SNPmt model reduced the estimate of variance and 
range between location effects indicating possible con-
founding between these 2 effects. The distributions of the 
estimated haplotype effects for the milk production traits 
(HAPLO model) are shown in Figure 3. The range of 
estimated haplotype effects was approximately between 
−0.5 and 0.5 phenotypic standard deviations, which is a 
large effect.

Brajkovic et al.: Mitogenome impact on cattle milk production
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For all traits analyzed, the best and worst haplotypes 
were those assigned to the T3 haplogroup, the most com-
mon haplogroup in European cattle, while other non-T3 
haplotypes (T1, T2, and T5) were mainly distributed 
within 50% of the worse haplotypes for milk production. 
The results suggest that if there is a difference between 
the haplogroups, their distribution of haplotype effects is 
likely to overlap. Unfortunately, we could not verify this 
statement due to the small number of non- T3 haplotypes. 
High linear correlation between haplotype effects of all 
milk production traits (rMILK-FAT = 0.83; rMILK-PROTEIN = 
0.98, and rFAT-PROTEIN = 0.85) were observed pointing to 
its “pleiotropic behavior” of non-recombining mitochon-
drial haplotypes considered as a “single gene.”

Decomposition of mitogenome variance to gene 
regions

By applying the SNPmt model to estimate mitochondri-
al effects, we were able to decompose the contribution of 
functionally or positionally specific mitogenome regions 
to the total variance between mitogenome effects. For 
this analysis we used the approach of Lara et al. (2022) 
for autosomal genome. This approach is important be-
cause the mitogenome does not recombine, meaning that 
covariances between some functionally related SNPs can 
be an important component of variance between mitoge-
nome effects. The results of the variance decomposition, 
separated by specific mitogenome region, are shown in 
Figure 4 and Table S3.

A very similar pattern of variance decomposition was 
observed for all 3 milk production traits, suggesting that 
the influence of the mitogenome on milk yield, fat yield 
and protein yield may occur through similar biological 
processes. For all 3 traits, the largest contribution to vari-
ance was observed for the D-loop end, followed by the 
ND5 and ND4, while the contribution of COX1, D-loop 
beginning, CYTB, 12S RNA, 16S RNA, ATP6, COX2, 
COX3, ND1, ND2, and ND6 was non-negligible.

At the same time, the estimated covariances were larger 
between SNPs located in different mitogenome regions 
and, with few exceptions, were predominantly negative 
(Figure 4). In contrast, the only substantial (negative) 
covariance within mitogenome regions was estimated 
between SNPs located in the D-loop end. We also ana-
lyzed variance of mitogenome regions as a function of 
the number of polymorphic sites using linear regressions, 
for more information see Figures S1 and S2.

Implications, limitations, and future work

The impact of mitogenome on milk production traits 
has been intensively studied at the end of 20th century 
using the cytoplasmic model (Bell et al., 1985; Kennedy, 
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1986; Schutz et al., 1994; Boettcher and Gibson, 1997; 
Albuquerque et al., 1998; Roughsedge et al., 1999). While 
estimated phenotypic variance explained by different ma-
ternal lineages (m2 ranging from 0 to 10%) has pointed to 
the possible considerable effect of mitogenome, the ob-
served results were never implemented in practical cattle 
dairy breeding. The lack of understanding why estimated 
cytoplasmic effects were zero in some populations and 
10% in other populations is one potential explanation. 
Questioning how well maternal lineages used in the cyto-
plasmic models reflect the true variation present in cattle 
mitogenome, with high possibility that some maternal 
lineages are identical or at least phylogenetically con-
nected, was another potential explanation. At the end, the 
lack of a breeding concept on how to utilize mitogenome 
variation was probably the final decisive explanation for 
ignoring cytoplasmic effects in practical cattle breeding. 
At the same time, simulations by Fortuna et al. (2024) 
have shown that the inclusion of mitochondrial DNA 
variation (mDNA) increases the accuracy in different 
animal categories by between +0.01 and +0.05, though 
with a considerable variation between replicates similar 
to large variation in past studies on phenotypic variance 
explained by different maternal lineages.

This study has been driven by recent advances in mi-
tochondrial research, where the functional capabilities 
of mitochondria have implications for crucial biological 
processes within the cell that extend far beyond their 
fundamental role in oxidative phosphorylation, the Krebs 
cycle and fatty acid oxidation (Al-Kafaji and Golbahar, 
2013; Picard et al., 2018; McGuire, 2019; Monzel et al., 
2023; Murphy and O’Neill, 2024).

With this in mind, we would be surprised that varia-
tion in the mitogenome have no effect on highly inten-
sive milk production, a stressful and energy-consuming 
biological process (Favorit et al., 2021). For example, 
mitochondrial protein gene expression and the oxidative 
phosphorylation pathway have been shown to be asso-
ciated with feed efficiency and energy balance in dairy 
cows (Dorji et al., 2020, 2021). More recently, mitochon-
drial efficiency has been linked to mtDNA copy number 
and associated with production in beef (Sanglard et al., 
2022b) and dairy (Laubenthal et al., 2016; Weikard and 
Kuehn, 2018) cattle.

We went beyond cytoplasmic modeling and showed, 
based on the complete mitogenome information, that 
substantial phenotypic variance in milk production traits 
(milk, fat, and protein yield), ranging from 5% to 7% 
across the 3 traits, was influenced by mitogenome. Our 
analyses were based on complex modeling and provided 
additional insights into the influence of the mitogenome 
on milk production traits. Thus, we were able to show that 
mitogenome diversity in Croatian Holsteins contributes 
significantly to considerable variation in milk production 

traits between different haplotypes. We are aware that de-
spite the large number of complete mitogenomes (109), 
the total number of lactating cows in the data set was 
relatively small compared with classical genetic analyses 
of quantitative traits in dairy cattle. For this reason, we 
expect that similar analyses will be performed in differ-
ent dairy breeds based on a larger number of complete 

Brajkovic et al.: Mitogenome impact on cattle milk production

Figure 4. Mitogenome variance decomposition by specific mitoge-
nome regions (variances and covariances between and within defined 
mitogenome regions) estimated for milk production traits in Holstein 
cows. A) milk yield, B) fat yield and C) protein yield.
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mitogenomes and lactating cows. The routine use of low-
coverage whole-genome sequences, which are already on 
the market, offers such an opportunity at no additional 
cost (Sanglard et al., 2022a). Alternatively, some com-
mercial SNP arrays provide good coverage of complete 
mitogenome polymorphism (Brajkovic et al., 2023). We 
were not able to study the separation of the influence of 
the nuclear genome and the mitogenome because we did 
not have genotype information for the nuclear genome 
SNPs, though we did control for nuclear genome via ex-
pected autosomal and X chromosome relationships based 
on pedigrees. Observation that SNPmt model reduced the 
estimate of variance and range between location effects 
is puzzling and possibly indicates confounding between 
these 2 effects. This result is pointing toward a need for 
future research on modeling genetic and environmental/
geographic effects with larger data sets.

Over 1,158 proteins are required for mitochondrial 
function in mammals, almost all of which are controlled 
by the nuclear genome, while interaction effects or in-
compatibility between nuclear and mitogenome SNPs 
have already been demonstrated (Wang et al., 2017; Dorji 
et al., 2020; Kwon et al., 2022; Ward et al., 2022). This 
indicates the need for further study of the separation of 
the influence of the nuclear genome and the mitogenome 
and possibly even their interaction. A nice example of 
such joint modeling of autosomal, nuclear mitochon-
drial (past mitogenome now part of nuclear genome), 
and mitogenome genetic variation for a complex trait in 
humans (neuroticism) was recently performed by Xia et 
al. (2023). In addition, we did not consider the effects of 
heteroplasmy (the occurrence of multiple mtDNA haplo-
types within a single cell or organism), which is known 
to affect complex traits in humans (Ye et al., 2014).

Our study demonstrates a pleiotropic effect of mitoge-
nomes with high correlations of the estimated haplotype 
effects between different milk production traits (r >0.83), 
suggesting that selection of some haplotypes might be 
favorable for several traits. More drastically, this result 
opens the quest for superior mitogenomes that could be 
created by genetic engineering, especially since signifi-
cant progress has recently been made in mitogenome ed-
iting in experimental mammals (Gammage et al., 2018; 
Rai et al., 2018; Klucnika and Ma, 2020; Barrera-Paez 
and Moraes, 2022). For the introduction of mitogenome 
gene editing in practical cattle breeding, either by intro-
ducing new variation or by enabling “recombination” 
between different haplotypes (simultaneous gene editing 
at several SNP positions), a much better understanding 
of how mitogenome genetic variation contributes to 
phenotypic differences without neglecting mito-nuclear 
interactions should obviously be studied. The separation 
of haplotype and single SNP effects in modeling the ef-
fects of the mitogenome on complex traits, together with 

comprehensive empirical evidence, is certainly the first 
step required.

CONCLUSION

In this pioneering study, we utilized complete mi-
togenome information to evaluate its influence on milk 
production traits in Croatian Holstein dairy cows. Our 
findings reveal substantial proportions of phenotypic 
variance explained by 4 different mitogenome models 
(CYTO, HAPLO, AMINO, and SNPmt), ranging from 
5% to 7% across all 3 milk traits, while proportion of 
phenotypic variance explained by EVOL was negligible. 
Notably, the observed influence of the mitogenome on 
milk production appears to stem from the significant mi-
togenome diversity given its small physical size, a factor 
that may have been overlooked in previous cytoplasmic 
models. Furthermore, our study demonstrates that the in-
tegration of complete mitogenome information provides 
additional insights. For example, it allows the inference 
of haplotypes or SNPs that contribute to the estimated dif-
ferences and reveals the pleiotropic effect of haplotypes, 
whether they are favorable or unfavorable for all 3 traits 
analyzed (milk, fat, and protein yield). Although these 
results need to be validated in other dairy cattle popula-
tions, especially with a larger number of sequenced mi-
togenomes and more phenotyped animals, the potential 
for leveraging mitogenome information in animal breed-
ing is promising, especially as the cost-effectiveness of 
acquiring complete mitogenome sequences continues to 
improve.
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Data archiving statement Mitochondrial sequences of 
109 Holstein cattle are deposited in GenBank (accession 
numbers from MZ901471 to MZ901579). The complete 
anonymized dataset used in this study will be available 
at Zenodo.

R code R code for data manipulation and model 
fitting will be available at GitHub (at the mo-
ment please use the Dropbox link: https: / / www 
.d ropbox  . com/  s c l /  f o /  l 6ez8eyk l1o03sw546z8a / 
A N Y d V 4 B H j J 1 H 9 E C O 1 i F T p 2 A  ? r l k e y  = 
csknoxhk27ifv0nhgf8oedtic & dl = 0).

SUPPLEMENTAL MATERIAL Supplemental mate-
rial is available in Dropbox link: https: / / www .dropbox 
.com/ scl/ fi/ dab8urjtupykrcx1po8tz/ Brajkovic _2024 
_JDS -mitogenome -milk -v43 _supplemental _material 
.docx ?rlkey = 3gabe5xpr9zhye9pphmswt0nt & dl = 0

Abbreviations used: AMINO = amino acid model 
with unique amino acid sequences; c2 = phenotypic 
variance proportion explained by contemporary group 
component; CYTO = cytoplasmic model with maternal 
lineages; Eta = the total number of mutations; EVOL 
= evolutionary model based on BEAST phylogenetic 
analysis; h = number of haplotypes; h2 = phenotypic 
variance proportion explained by additive effect of au-
tosomal chromosomes; HAPLO = haplotypic model with 
mitogenome sequences; Hd = haplotype (gene) diversity; 
k = average number of nucleotide differences; m2 = phe-
notypic variance proportion explained by mitochondrial 
component; MJ network = median joining network; NGS 
= next-generation sequencing; p2 = phenotypic variance 
proportion explained by permanent environment; S = 
number of variable sites; SNPmt = mitogenome SNP 
model; x2 = phenotypic variance proportion explained by 
X chromosome component; π = nucleotide diversity (per 
site); ρ = spatial range parameter;
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